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Recently a new class of approximating coarse-grained stochastic processes and associ-
ated Monte Carlo algorithms were derived directly from microscopic stochastic lattice
models for the adsorption/desorption and diffusion of interacting particles(12,13,15). The
resulting hierarchy of stochastic processes is ordered by the level of coarsening in the
space/time dimensions and describes mesoscopic scales while retaining a significant
amount of microscopic detail on intermolecular forces and particle fluctuations. Here
we rigorously compute in terms of specific relative entropy the information loss be-
tween non-equilibrium exact and approximating coarse-grained adsorption/desorption
lattice dynamics. Our result is an error estimate analogous to rigorous error estimates
for finite element/finite difference approximations of Partial Differential Equations. We
prove this error to be small as long as the level of coarsening is small compared to the
range of interaction of the microscopic model. This result gives a first mathematical
reasoning for the parameter regimes for which approximating coarse-grained Monte
Carlo algorithms are expected to give errors within a given tolerance.

KEY WORDS: Coarse-grained Monte Carlo methods, Markov processes, Interacting
particle systems, Information loss.
MSC (2000) subject classifications: 82C80, 60J22, 94A17.

1. INTRODUCTION

Problems in scientific disciplines ranging from materials science to the dynam-
ics of macromolecules, to the spread of epidemics and climate modeling involve
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non-linear interactions across a vast disparity of scales ranging from the mi-
croscopic to the macroscopic. While microscopic simulation methods such as
Molecular Dynamics and Monte Carlo (MC) algorithms can describe aspects of
such complex systems, they are limited to short scales when compared to morpho-
logical features such as vortices, traveling waves or domain walls, that typically
involve much larger mesoscopic scales. One natural way to by-pass this obstacle
is to map the microscopic model into a model defined at a coarse intermediate
scale, thus defining an exact coarse-grained model. Unfortunately, most of the
“good” properties of microscopic models, in particular the Markov property of
MC dynamics, are lost in this transition. This additional difficulty urges to de-
fine approximating mesoscale Markovian models. The main issue is that, since
stochastic fluctuations inherited from the microscopics can be important (e.g. in
self-organization problems characterized by coherent structures such as pattern
formation(25)) they need to be properly included in any approximating model.

In addition to the aforementioned computational and mesoscale modeling
challenges posed by the disparity in scales within the same model, in numerous
applications a further “disparity in models” arises: in phenomena with detailed
fluid/surface or boundary layer interactions arising in catalysis, epitaxial growth
and chemical vapor deposition as well as in atmosphere/ocean science(11,17,21,28),
it is necessary to couple microscopic, possibly stochastic models describing small
scale dynamics on a surface (e.g. atoms, molecules or an active boundary layer),
along with continuum Partial Differential Equations (PDE) for species, fluid and
thermodynamic variables on the fluid phase overlying to the surface/boundary
layer. It is therefore inevitable that features of the microscopic model will essen-
tially enter as a subgrid effect in the coupling with the coarse computational grid
of the macroscopic PDE model. In this case, the proper incorporation of stochas-
tic and deterministic effects from the subgrid microscale is once again a critical
element in the modeling and simulations.

To address certain aspects of these challenges, the authors in Ref.(11−−13,15)

started developing systematic mathematical strategies for the approximation of
exact coarse-grained dynamics and the corresponding simulators. One of the prin-
cipal goals in their papers was to address a large class of applied problems which
are currently intractable with conventional microscopic simulation methods such
as MC algorithms. They proposed a microscopically derived hierarchy of new
approximating coarse-grained stochastic models–referred to as Coarse-Grained
MC (CGMC)–ordered by the magnitude of space/time scales. The CGMC models
are reminiscent of Multi-Resolution Analysis approaches to the discretization of
operators(1). They span length/time scales from the microscopic to the mesoscopic,
and involve Markovian birth-death and generalized exclusion processes. Further-
more, this new set of Markovian models involves a reduced set of observables over
the original microscopic models, still incorporating microscopic details and noise,
as well as the interaction of the unresolved degrees of freedom. A key feature of



Information Loss in Coarse-Graining 117

the procedure is that the full hierarchy of the derived stochastic dynamics satisfies
detailed balance relations and as a result yields self-consistent random fluctuation
mechanisms(12,13,15).

The primary goal of this paper is to rigorously justify CGMC models in non-
equilibrium by estimating the information loss between exact and approximating
coarse-grained adsorption/desorption lattice dynamics for any level of coarse-
graining. By exact coarse-grained process we mean the block dynamic (F(σt ))t≥0

resulting from the true microscopic process (σt )t≥0 while the approximating dy-
namics (ηt )t≥0 is the one introduced in the aforementioned works(11,12,13,15). More
specifically, for a system of size N and every finite time horizon T > 0 we derive
an error estimate between the distribution of (F(σt ))t∈[0,T ] (denoted DF(σ )

[0,T ]) and
the distribution of (ηt )t∈[0,T ] (denoted Dη

[0,T ]). In contrast to the numerical analy-
sis of finite element/finite difference approximations for PDE where the error is
calculated in a suitable norm (e.g. Sobolev, Lp, etc.), here the error is measured
in terms of the specific relative entropy and represents the loss of information per
particle in the transition from the exact to the approximating models. We prove
that

1

N
H

(
DF(σ )

[0,T ]

∣∣Dη

[0,T ]

) = T × O

(
q

2L + 1

)
(1)

i.e. that if the range of interaction L is long enough compared to the coarse-graining
level q the error resulting from the approximation is small. A crucial technical
step in the analysis is the introduction of an auxiliary microscopic Markovian
process which is directly reconstructed from the CGMC process and approximates
within a T × O( q

2L+1 ) error in relative entropy the original microscopic process;
the reconstructed process may be of independent computational and modeling
interest on its own.

Some aspects of coarse-grained modeling similar to CGMC simulations
have to an extent been partly introduced in a related context in the existing
literature(3,6,20,22). Indeed, in recent years there has been a growing interest in
developing coarse-grained models and simulators for microscopic systems aris-
ing in a broad spectrum of applications(4,7−−9,10,23,24,27). For example in the
polymer science literature the coarse-graining of atomistic models of polymer
chains is expected to yield models with fewer observables than the original micro-
scopic system making them computationally more efficient than direct numerical
simulations(5,23).

Concluding the Introduction we outline the structure of this paper. In Section 2
we discuss the recent work(12,13) on CGMC which addressed the coarse-graining
of adsorption/desorption dynamics. In Section 3 we discuss the error analysis
between exact and approximating CG processes and in Section 4 we briefly present
some indicative numerical simulation results. In Section 5 we present the details
of the proofs in the paper.
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2. A HIERARCHY OF MARKOVIAN MODELS

To demonstrate the basic ideas, we introduce in Section 2.1 a dynamic Ising-
type system as our microscopic model. In Section 2.2 we derive a complete
hierarchy of exact and approximating coarse-grained models from the microscopic
one(12,13).

2.1. Microscopic model

We consider a microscopic (or “fine-grained”) Ising-type system evolving
on a one-dimensional torus T = [0, 1). More precisely, we fix a positive integer
N , that represents the inverse of the distance between particles. For every x ∈
{0, . . . , N − 1} we denote by ρ(x/N ) the number of particles in the interval
[x/N , (x + 1)/N ), that is ρ(x/N ) = 1 if [x/N , (x + 1)/N ) is occupied and 0
otherwise. Our observable ρ = {ρ(0), . . . , ρ(N − 1/N )} is therefore an element
of HN = {0, 1}LN , provided LN stands for the discrete one-dimensional torus
with N points: LN = 1

N Z ∩ T. The equilibrium states of the system are weighted
according to the Gibbs probability measure

P f g
N (ρ) = 1

Z f g
N

exp
{
−βH f g

N (ρ)
} ∏

x∈LN

ν(ρ(x))

where ν is the prior distribution ν(0) = ν(1) = 1/2, and

H f g
N (ρ) = −1

2

∑
x∈LN

∑
y∈LN
y �=x

J (x, y)ρ(x)ρ(y) +
∑

x∈LN

hρ(x).

The so-called partition function Z f g
N is a constant making P f g

N a probability mea-
sure. The interparticle potential J accounts for interactions between occupied sites
and h models an external field. We consider symmetric, translation invariant poten-
tials where by the integer 2L we denote the total number of interacting neighboring
sites of a given point on LN . Since we consider periodic boundary conditions on
LN , then for 2L + 1 = N we recover the case of long-range interactions. The
interaction potential can be written as

J (x, y) = J (x − y) = 1

2L + 1
V

( N (x − y)

2L + 1

)
, x , y ∈ LN , (2)

where V : R �→ R is twice continuously differentiable with V (r ) = V (−r ), and
V (r ) = 0 if |r | > 1/2, accounting for possible finite range interactions.

The dynamics of Ising-type models considered in the literature consist of
order parameter flips and/or exchanges that correspond to different physical
processes(19). In the present paper we will focus on a reversible flip dynamic,
the so-called Arrhenius dynamics. It is set-up as follows: if ρ is the configuration
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prior to a flip at x , then we denote the configuration after the flip by ρx ,

ρx (y) =
{

1 − ρ(x) if y = x
ρ(x) if y �= x .

Such flips occur at x with a rate cσ (x, ρ) given by

cσ (x, ρ) = (1 − ρ(x)) + ρ(x) exp
( − βU f g

N (x, ρ)
)

where

U f g
N (x, ρ) =

∑
y∈LN
y �=x

J (x − y)ρ(y) − h

is the total energy contribution from the particle interactions with the particle
located at the site x ∈ LN , as well as the external field h. The resulting dynamic
is a continuous time Markov chain(18) which generator Lσ

N acts on the set B(HN )
of bounded measurable functions defined on HN :(

Lσ
N g

)
(ρ) =

∑
x∈LN

c(x, ρ)[g(ρx ) − g(ρ)]. (3)

2.2. Exact and approximating coarse-grained models

Let m and q be two integers such that N = mq. We consider a parti-
tion of T into m intervals [k/m, (k + 1)/m), k = 0, . . . , m − 1, thus defining
a coarse lattice. Each of these intervals contains q adjacent intervals of the form
[x/N , (x + 1)/N ), x = 0, . . . , N − 1. This is equivalent to defining a partition
D0, . . . , Dm−1/m of LN with Dk/m = { kq+l

N , 0 ≤ l ≤ q − 1}.
From the microscopic model, we define a coarse-grained observable on the

coarse lattice. One such natural choice is the coverage over each coarse cell Dk :

α(k) =
∑
y∈Dk

ρ(y) , k = 0, ..., m − 1/m .

The observable α = {α(0), . . . , α(m − 1/m)} at this coarse scale takes values in
Hm,q = {0, . . . , q}Lm whereLm stands for the discrete one-dimensional torus with
m points: Lm = 1

m Z ∩ T. The map F naturally establishes a relation between the
fine and the coarse scales:

F : HN → Hm,q

ρ �→ ( ∑
x∈D0

ρ(x), . . . ,
∑

x∈Dm−1/m
ρ(x)

)
.

(4)

Conversely, for every x ∈ LN we will denote by [x] ∈ Lm the index of the set
Dk to which x belongs. Before we continue, we remark that in general neither
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the exact equilibrium measure at the coarse scale F(P f g
N )(α) = ∑

ρ∈HN
F(ρ)=α

P f g
N (ρ)

is a Gibbs measure nor the exact CG process (F(σt ))t≥0 is a Markov Process.
This means that direct numerical simulation of this block model is not straight-
forward. Therefore our aim is to define an approximating Markovian dynamic
(ηt )t≥0 at the scale Hm,q that is suitable for fast computations and at the same
time keeps track of the fluctuations of the exact CG model, i.e. a Markov pro-
cess which distribution is close to (F(σt ))t≥0’s one. As a result, even if (ηt )t≥0

has not exactly the same distribution as (F(σt ))t≥0, it will be feasible to simu-
late it easily via a MC algorithm since it is a Markov Process, and this simu-
lation will be meaningful provided we have some control on the error resulting
from this approximation. Computationally (ηt )t≥0 is advantageous over (σt )t≥0,
since it has a substantially smaller state space and thus can be simulated more
efficiently.

The approximating dynamic is obtained as follows(12,13,15): First we de-
rive with a direct calculation from the microscopic process the exact evolution
equation for the coverage (F(σt ))t≥0 in the coarse cell Dk . Let g ∈ B(Hm,q ),
ρ ∈ HN an initial state for the microscopic dynamic (σt )t≥0 and α = F(ρ) ∈ Hm,q .
We have

d

dt
Eσ

ρ g(F(σt )) =
∑

k∈Lm

{ ∑
x∈Dk

cσ (x, ρ)
(
1 − ρ(x)

)} × [g(α + δk) − g(α)]

+
∑

k∈Lm

{ ∑
x∈Dk

cσ (x, ρ)ρ(x)

}
× [g(α − δk) − g(α)] ,

where Eσ
ρ stands for the mean-value w.r.t. the distribution of (σt )t≥0 with fixed

initial condition ρ, and δk ∈ Hm,q is the configuration with a single particle at the
site k ∈ Lm . The terms

c̄a(k, ρ) :=
∑
x∈Dk

cσ (x, ρ)
(
1 − ρ(x)

)
, c̄d(k, ρ) :=

∑
x∈Dk

cσ (x, ρ)ρ(x), (5)

are the exact coarse-grained rates for adsorption and desorption in a coarse cell
Dk .

Next we follow the main idea in the CGMC procedure(12,13,15) and express
these exact coarse-grained rates, up to a controlled error, as functions of the
“coarse-grained" random variable α = F(ρ), rather than the microscopic ρ. It
yields from (5) the generator for a Markov process (ηt )t≥0. We refer to(12) where
this derivation is formally carried-out. The obtained update rate with which the
value α(k) is increased by 1 (adsorption rate of a single particle in the coarse cell
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Dk) and decreased by 1 (desorption in Dk) respectively are:

cη,a(k, α) = [q − α(k)] , cη,d (k, α) = α(k) exp[−β(U cg
m,q (k, α))] , (6)

where

U cg
m,q (k, α) =

∑
l∈Lm
l �=k

J̄ (l, k)α(l) + J̄ (0, 0)(α(k) − 1) − h .

The coarse-grained potential J̄ is defined as the average of all contributions of
pairwise microscopic interactions between coarse cells and within the same coarse
cell:

J̄ (k, l) = 1

q2

∑
x∈Dk

∑
y∈Dl

J (x − y) (7)

for k, l ∈ Lm, k �= l, and

J̄ (l, l) = J̄ (0, 0) = 1

q(q − 1)

∑
x∈Dl

∑
y∈Dl
y �=x

J (x − y). (8)

The first rate in (6) is obtained exactly while the second is obtained from (5) with
an error of the order O(q/2L + 1), when replacing ρ by F(ρ) = α. The resulting
generator Lη

m,q of the approximating coarse-grained Markov process (ηt )t≥0 is

(Lη
m,q g)(α) =

∑
k∈Lm

{
cη,a(k, α)[g(α + δk) − g(α)]

+cη,d (k, α)[g(α − δk) − g(α)]
}

for every g ∈ B(Hm,q ). The stationary measure for (ηt )t≥0 is a canonical Gibbs
measure defined by

Pcg
m,q (α) = 1

Zcg
m,q

exp
( − βH cg

m,q (α)
)
Pm,q (α) ,

where the product binomial distribution

Pm,q (α) =
m∏

k=1

q!

α(k)!(q − α(k))!

(
1

2

)q
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is the prior distribution arising from the microscopic prior by including q inde-
pendent sites, and H cg

m,q is the coarse-grained Hamiltonian defined by

H cg
m,q (α)=−1

2

∑
l∈Lm

∑
k∈Lm
k �=l

J̄ (k, l)α(k)α(l) − J̄ (0, 0)

2

∑
l∈Lm

α(l)
(
α(l)−1

)+ ∑
l∈Lm

hα(l).

(9)
The same-cell interaction term α(l)

(
α(l) − 1

)
yields the global mean-field theory

when the coarse-graining is performed beyond the interaction parameter L while
at the other extreme it is consistent with the Ising case q = 1. As a result we obtain
a complete hierarchy of models spanning from Ising (q = 1) to mean-field. In fact,
the specific form of the self-interaction α(l)

(
α(l) − 1

)
in (9) ensures the detailed

balance condition for adsorption/desorption mechanisms which guarantees the
proper inclusion of fluctuations in the approximating coarse-grained model as
they arise from the microscopics(15).

3. INFORMATION LOSS IN THE APPROXIMATION SCHEME

Exact and approximating coarse-grained processes share the same asymptotic
mean behavior(13,15), i.e. their averages solve the same mesoscopic deterministic
PDE

ct = d0
[
1 − c − exp(βh)c exp

( − βV ∗ c
)]

in the long-range interactions case N = 2L + 1. In addition to comparing asymp-
totic mean behaviors, we would like to understand how well and in what regimes
CGMC captures the fluctuations of the exact CG system. As a first step in this
direction, in numerical simulations(13) it is observed almost pathwise agreement
between approximating and exact CG processes for the dynamic introduced in
Section 2 when the level of coarse-graining q is smaller than L , for instance
q/L ≈ .25, and L = 40 (see also the simulations in Figs. 1 and 2). These simu-
lations suggested that in order to understand questions beyond the agreement in
average behavior, we would like to have a comparison of the entire distribution
of the exact and approximating CG processes: We compute in terms of specific
relative entropy the information loss in the transition from the exact to the approx-
imating CG process. The main difficulty we have to face is due to the fact that
(F(σt ))t≥0 fails to be a Markov process. To overcome this obstacle we define in
Section 3.1 a microscopic process (γt )t≥0 similar to (σt )t≥0 and better adapted to
scale transformations. It allows to reduce the computation of our error estimate to
the analysis of two Markov processes.
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Fig. 1. Coarse-grained vs. microscopic MC adsorption/desorption simulations for the total coverage
in various regimes when phase transitions do not occur (Color online).

3.1. A reconstructed microscopic Markov process

We define a new microscopic dynamics γ by the following Markov generator:(
Lγ

N f
)
(ρ) =

∑
x∈LN

cγ (x, ρ) [ f (ρx ) − f (ρ)]

for every f ∈ B(HN ) where

cγ (x, ρ) = (1 − ρ(x)) + ρ(x)e−β(U cg
m,q ([x],F(ρ))).

This dynamic is such that (F(γt ))t≥0 is still a Markov process. This is due to the
fact that its generator is a closed function of F(ρ). Moreover, as it is demonstrated
below, (F(γt ))t≥0 and (ηt )t≥0 have the same distribution. As a consequence a
sample path of (γt )t≥0 with initial configuration γ0 can be reconstructed from a
sample path of (ηt )t≥0 with initial configuration F(γ0) by a sub-sampling procedure
in the following way: Let us assume for example that the first upgrade in (ηt )t≥0
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Fig. 2. Coarse-grained vs. microscopic MC adsorption/desorption simulations for the total coverage
in the presence of phase transitions (Color online).

is a birth on a given coarse cell Dk at date t0. Then we pick uniformly at random
a micro-cell x ∈ Dk among those such that γ0(x) = 0 and change it to γt0 (x) = 1
leaving the other micro cells unchanged. It is clear how we proceed when the first
change in η is a death and how the rule is extended to any time t ≥ 0.

Now we prove that for any distribution µ on HN , the Markov process (γt )t≥0

initially distributed according to µ and evolving according to Lγ

N is such that
(F(γt ))t≥0 is still a Markov process. To this end we shall use the notation cγ (ρ, ρ ′)
with ρ, ρ ′ ∈ HN as a natural extension of cγ (x, ρ) defined above in the sense that

cγ (ρ, ρ ′) =
{

cγ (x, ρ) if ∃x ∈ LN such that ρ ′ = ρx

0 otherwise.

Proving that (F(γt ))t≥0 is still a Markov process amounts to prove that the partition
of HN induced by F through the equivalence relation

ρ1 ∼ ρ2 if and only if F(ρ1) = F(ρ2) ∈ Hm,q
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is lumpable for (γt )t≥0 i.e. that for every ϕ, ϕ′ ∈ Hm,q and every ρ1, ρ2 ∈ HN such
that F(ρ1) = F(ρ2) = ϕ we have∑

ρ ′∈ϕ′
cγ (ρ1, ρ

′) =
∑
ρ ′∈ϕ′

cγ (ρ2, ρ
′) (10)

where in the summands above, ϕ′ is considered as an equivalence class over HN

(see Section 6.3 in Ref. [16] for an account on lumpability of Markov chains).
Condition 10 is a straightforward extension to continuous time Markov chains
of the row sum criterion, established to characterize lumpability in discrete time
Markov chains (see Theorem 6.3.2 in Ref. [16]). Each of the two sums in (10) is
non-zero if and only if ϕ and ϕ′ differ from exactly one unit at one site k0 ∈ Lm ,
and are identical everywhere else. Thus∑

ρ ′∈ϕ′
cγ (ρ1, ρ

′) =
∑

x∈Dk0

cγ (x, ρ1)

=
∑
x∈Dk0

ρ1(x)=0

1 +
∑
x∈Dk0

ρ1(x)=1

e−βU cg
m,q (k0,F(ρ1))

=
∑
x∈Dk0

ρ2(x)=0

1 +
∑
x∈Dk0

ρ2(x)=1

e−βU cg
m,q (k0,F(ρ2))

=
∑

x∈Dk0

cγ (x, ρ2) =
∑
ρ ′∈ϕ′

cγ (ρ2, ρ
′),

which proves (10). In addition, it also follows easily from the raw sum criterion
that the transition rates of (F(γt ))t≥0 and (ηt )t≥0 are the same. Hence, whenever
these processes have the same initial distribution, they induce the same probability
measure on the space D(Hm,q ) of right-continuous with left-limits Hm,q -valued
paths defined on R+.

Remark. We refer to (γt )t≥0 as a reconstructed microscopic process since it can be
directly obtained from the coarse-grained process (ηt )t≥0 . We next show that for
any fixed time horizon T > 0 (γt )t∈[0,T ] approximates within a T × O( q

2L+1 ) error
in specific relative entropy the microscopic process (σt )t∈[0,T ]. The reconstructed
process may be of independent computational and modeling interest, for instance
in simulations that require spatially adaptive model refinement (2).

3.2. Error Estimates

Now we look for a control on the relative entropy of the processes
(F(σt ))t∈[0,T ] and (ηt )t∈[0,T ] for any fixed time horizon T > 0 and any fixed initial
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condition α ∈ Hm,q . We denote by Dη,α

[0,T ] (resp. DF(σ ),α
[0,T ] ) the distribution on the

space D[0,T ](Hm,q ) of right-continuous with left-limits Hm,q -valued paths defined
on [0, T ] of (ηt )t∈[0,T ] (resp. (F(σt ))t∈[0,T ]) with fixed initial condition α. A direct
computation of this relative entropy is difficult (if possible) due to the fact that
(F(σt ))t≥0 fails to be a Markov process. However it follows from the variational
formulation of the relative entropy(18) that

H
(
DF(σ ),α

[0,T ]

∣∣Dη,α

[0,T ]

) = H
(
DF(σ ),α

[0,T ]

∣∣DF(γ ),α
[0,T ]

)
≤ H

(
Dσ,ρ

[0,T ]

∣∣Dγ,ρ

[0,T ]

)
(11)

provided ρ ∈ HN satisfies F(ρ) = α. The problem is then reduced to the compu-
tation of the relative entropy of two Markov processes. Let us define the difference

N

m,q (x, ρ) by


N
m,q (x, ρ) := U f g

N (x, ρ) − U cg
m,q ([x], F(ρ)).

We obtain

Lemma 31. The relative entropy defined by (11) satisfies

H
(
Dσ,ρ

[0,T ]

∣∣Dγ,ρ

[0,T ]

) = Eσ
ρ

∫ T

0

∑
x∈LN

e−βU f g
N (x,ρ)ρs(x)

[
1 − e−
N

m,q (x,ρs )
]
ds

+ Eσ
ρ

∑
s≤T

∃x∈LN ρs−(x)=ρs (x)+1


N
m,q (x, ρs−). (12)

Therefore one needs a control on the 
N
m,q (x, ρ)’s for ρ ∈ HN and x ∈ LN such

that ρ(x) = 1.

Lemma 32. For every N , m, q > 0, ρ ∈ HN , x ∈ LN we have

|
N
m,q (x, ρ)| ≤ O

(
q

2L + 1

)

where the O-estimate is uniform in ρ and x and holds when q/2L + 1 → 0.

Combining these results we obtain the announced error estimate.

Theorem 31. The information loss in the transition from the exact to the approx-
imating coarse-grained process satisfies

1

N
H

(
DF(σ ),α

[0,T ] |Dη,α

[0,T ]

) = T × O

(
q

2L + 1

)
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for any T > 0, N , m, q < L where the O-estimate holds uniformly when q/2L +
1 → 0.

For the sake of clarity the proof of these results is postponed to the end of the
paper.

Remarks.
1. The relative entropy rescaled by the size of the microscopic system in
Theorem 3.1 can be regarded as the loss of information per particle. This latter
interpretation is evident from an information theory point of view if one considers
N independent particles.
2. The relative entropy estimate demonstrates the limitations of the coarse-graining
method since it gives an order one error for nearest neighbor interactions (L = 1).
This is not surprising in view of well-known renormalization calculations for
the Ising model, as well as explicit numerical comparisons(12). On the other
hand, Theorem 3.1 rigorously identifies a small parameter in the coarse-graining
process, namely the ratio q/(2L + 1); as it is the case with most asymptotics,
from a practical/computational point of view a small parameter can be even fairly
large, see for instance the values of q and L in the simulations in Fig. 1 and even
in the phase transition regime in Fig. 2. We also refer to simulations in(12,14).
3. Although the estimate in Theorem 3.1 is for finite times [0, T ] only, and grows
as T , it is still useful; in the case of phase transitions (e.g. Fig 2 in Section 4)
the estimate ensures numerical accuracy during nucleation, which is typically
an initial stage of the evolution. We refer to simulations partly motivated by our
rigorous results in(14) that make precisely this point. Furthermore, the simulations
there demonstrate the accurate prediction of transition paths and the eventual
domain switching. In addition, we have that, the coarse-grained Gibbs measure
lies within a controlled error from the exact CG measure(15). More specifically,
we easily obtain the equilibrium version of Theorem 3.1, namely

1

N
H

(
F

(
P f g

N

)|Pcg
m,q

) = O
( q

2L + 1

)
. (13)

As a result of Theorem 3.1 and the aforementioned Gibbs measure estimate, the
transient, as well as the long time dynamics are expected to be captured accurately
by the CGMC model.
4. A simple but long computation shows that what is lost in (11) is of order
T O(q/2L + 1).
5. In the particular case N = 2L + 1 our analysis easily yields

lim sup
N→∞

1

N
logDF(σ ),α

[0,T ] (A) = lim sup
N→∞

1

N
logDη,α

[0,T ](A)
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and

lim inf
N→∞

1

N
logDF(σ ),α

[0,T ] (A) = lim inf
N→∞

1

N
logDη,α

[0,T ](A)

for any measurable A ⊂ D[0,T ](Hm,q ) and any level of coarsening qN such that
qN /N → 0.
6. Careful inspection of the proof reveals that the smoothness assumptions on
V can be suitably relaxed. However in this paper we do not pursue maximum
generality. Similarly the result extends also in higher dimensions.

4. COARSE-GRAINED MONTE CARLO ALGORITHMS

We first present in Figs. 1 and 2 two comparative simulations between mi-
croscpic (q = 1) and coarse-grained (q > 1) MC simulations. We use the exact
same seed for our random number generator when comparing simulations for
different coarse-graining values of q. This allows us to focus on the differences
attributed only to the coarse graining and not on those resulting from different
realizations due to different seeds. This numerical coupling argument yields in the
end the pathwise agreement in the figures. Clearly the numerics indicate there is
a stronger result than the estimates in this paper.

In all figures the total coverage over the entire lattice is plotted as a time
series; in particular Fig. 2 is a simulation within the phase transition regime
(β J0 = 6), while other parameters of the systems are specified in both Figures. The
interparticle potential is assumed to be piecewise constant, although simulations
with smooth Morse potentials give rise to similar results(12). In Fig. 2 there is a
marked disagreement with microscopics when the system is over coarse-grained
(q = 1000). Detailed comparisons of the spatial structures, as well as of statistical
quantities (e.g. escape times in Fig. 2) are given in(14).

The implementation of CGMC is essentially identical to the microscopic
MC with a few modifications(19). First, the interparticle potential J is coarse-
grained at the beginning of a simulation to represent interactions between particles
within each cell as well as interactions with neighboring cells. Second, the order
parameter is still an integer that varies between 0 and q, instead of 0 and 1 which
is typical for microscopic MC. For CGMC the CPU time in kinetic MC simulation
with global update, i.e., searching the entire lattice to identify the chosen site,
scales approximately as O(m3) vs. O(N 3) for a conventional MC algorithm. In
addition, coarse-grained potentials J̄ are compressed and thus additional savings
are made in the calculation of the activation energies. Overall in the case of
adsorption/desorption processes the CPU time decreases(12) with increasing q
approximately as O(1/q3). For example, a modest tenfold reduction in the number
of sites (q = 10) results in reduced CPU by a factor of 1000, yielding a significant
enhancement in performance. Thus, while for macroscopic size systems in the
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millimeter length scale or larger, microscopic MC simulations are impractical on
a single processor, the computational savings of CGMC make it a suitable tool
capable of capturing large scale features, while retaining microscopic information
on intermolecular forces and particle fluctuations.

5. PROOFS

5.1. Proof of Lemma 3.1

We first need the components (λσ , pσ ) and (λγ , pγ ) of the skeleton processes
associated to the dynamics that enter into play (see Appendix 1.2 in Ref. [18] for
an account on skeleton processes associated to continuous time Markov chains).
First we have

λσ (ρ) = N −
∑

x∈LN

ρ(x) +
∑

x∈LN

ρ(x)e−βU f g
N (x,ρ).

If there exists x ∈ LN such that ρi+1 = ρx
i then

λσ (ρi )pσ (ρi , ρi+1) = 1 − ρi (x) + ρi (x)e−βU f g
N (x,ρ)

and pσ (ρi , ρi+1) = 0 otherwise. The analogous quantities for the process (γt )t≥0

are

λγ (ρ) = N −
∑

x∈LN

ρ(x) +
∑

x∈LN

ρ(x)e−βU cg
m,q ([x],F(ρ)),

and if there exists x ∈ LN such that ρi+1 = ρx
i then

λγ (ρi )pγ (ρi , ρi+1) = 1 − ρi (x) + ρi (x)e−βU cg
m,q (F(ρ),[x])

while pγ (ρi , ρi+1) = 0 otherwise. The Radon-Nikodym derivative of Dσ,ρ

[0,T ] w.r.t.
to Dγ,ρ

[0,T ] is given by

dDσ,ρ

[0,T ]

dDγ,ρ

[0,T ]

(
(ρt )t∈[0,T ]

)=exp

{∫ T

0
[λσ (ρs)−λγ (ρs)]ds−

∑
s≤T

log
λσ (ρs−)pσ (ρs−, ρs)

λγ (ρs−)pγ (ρs−, ρs)

}
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where the sum in the last term runs over the discontinuity times of (ρt )t∈[0,T ], see
Proposition A1.2.6 in Ref. [18]. Thus

dDσ,ρ

[0,T ]

dDγ,ρ

[0,T ]

(
(ρt )t∈[0,T ]

) = exp




∫ T

0

∑
x∈LN

ρs(x)
[
e−βU f g

N (x,ρs ) − e−βU cg
m,q ([x],F(ρs )

]
ds

−
∑
s≤T

∃x∈LN ρs−(x)=ρs (x)+1

log
e−βU f g

N (x,ρs−)

e−βU cg
m,q ([x],F(ρs−))




= exp




∫ T

0

∑
x∈LN

e−βU f g
N (x,ρs )ρs(x)[1 − e−
N

m,q (x,ρs )]ds

+
∑
s≤T

∃x∈LN ρs−(x)=ρs (x)+1

β
N
m,q (x, ρs−)


 .

Hence

H (Dσ,ρ

[0,T ]|Dγ,ρ

[0,T ]) = Eσ
ρ log

dDσ,ρ

[0,T ]

dDγ,ρ

[0,T ]

= Eσ
ρ

∫ T

0

∑
x∈LN

e−βU f g
N (x,ρ)ρs(x)

[
1 − e−
N

m,q (x,ρs )
]
ds

+ Eσ
ρ

∑
s≤T

∃x∈LN ρs−(x)=ρs (x)+1


N
m,q (x, ρs−).

5.2. Proof of Lemma 3.2 and Theorem 3.1

We prove Lemma 3.2 and Theorem 3.1 by considering particular cases of increas-
ing difficulty up to the general setting.

5.2.1. Curie-Weiss Model

This model corresponds to 2L + 1 = N with a constant potential V (r ) = J0

for every r ∈ [−1/2, 1/2]. Simple algebra shows that 
N
m,q (x, ρ) = 0 for every

ρ ∈ HN and every x ∈ LN such that ρ(x) = 1. Thus H (DF(σ ),α
[0,T ] |Dη,α

[0,T ]) = 0 for
every T > 0, N , m, q, as it must naturally be expected in this case.
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5.2.2. Long-Range Mean-Field Models

This class of models still corresponds to 2L + 1 = N , but now the V ’s are not
constant. In order to get a control on the 
N

m,q (x, ρ)’s we first look for a control on
the difference between the exact and coarse-grained interaction potentials as de-
fined in(2,7,8). Let k, l ∈ Lm , k �= l, x, x ′ ∈ Dk , y, y′ ∈ Dl . Due to the smoothness
of V we have

V (x − y) = V (x ′ − y′) + ((x − y) − (x ′ − y′))V ′(x ′ − y′) + O(((x − y) − (x ′ − y′))2).

The O-estimate above holds when (x − y) − (x ′ − y′) → 0. Actually |(x − y) −
(x ′ − y′)| ≤ |x − x ′| + |y − y′| ≤ 2/m, thus

J (x − y) = 1

q2

∑
x ′∈Dk

∑
y′∈Dl

J (x ′ − y′) + 1

Nq2

∑
x ′∈Dk

∑
y′∈Dl

((x − y)

−(x ′ − y′))V ′(x ′ − y′) + 1

Nq2

∑
x ′∈Dk

∑
y′∈Dl

O

(
1

m2

)

as m → ∞. Hence

|J (x − y) − J̄ (k, l)| ≤ 1

Nq2

∑
x ′∈Dk

∑
y′∈Dl

(|x − x ′| + |y − y′|)|V ′(x ′ − y′)|

+ 1

N
O

(
1

m2

)
≤ O

( q

N 2

)
as q/N → 0. Accordingly, for every k ∈ Lm , x, y ∈ Dk

|J (x − y) − J̄ (0, 0)| ≤ O
( q

N 2

)
when q/N → 0. Thus for every ρ ∈ HN and x ∈ LN such that ρ(x) = 1

|
N
m,q (x, ρ)| = |U f g

N (x, ρ) − U cg
m,q ([x], F(ρ))|

=

∣∣∣∣∣∣∣∣
∑
y∈LN
y �=x

J (x − y)ρ(y) −
∑
k∈Lm
k �=[x]

J̄ ([x], k)F(ρ)(k) − J̄ (0, 0)
(

F(ρ)([x]) − 1
)
∣∣∣∣∣∣∣∣

≤
∑
k∈Lm
k �=[x]

∑
y∈Dk

| J̄ ([x], k) − J (x − y)|ρ(y) +
∑
y∈D[x]
y �=x

|J (x − y) − J̄ (0, 0)|ρ(y)

≤ O
( q

N

)
.
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On the other hand, since the potential J is summable, there exists a K1 < ∞ such
that

sup
N∈N

sup
ρ∈HN ,x∈LN

∣∣U f g
N (x, ρ)

∣∣ ≤ K1.

Finally, there exist 0 < K2, K3 < ∞ such that

K2 N ≤ sup
ρ∈HN ,x∈LN

|λσ (ρ)| ≤ K3 N

so the mean quantity of jumps for (σt )t≥0 during a time interval [0, T ] is of the
order N T . Combining all these controls with (11) and (12) leads to

lim
N→∞

1

N
H

(
DF(σ ),α

[0,T ] |Dη,α

[0,T ]

) = O
(qN

N

)

for any level of coarsening qN and m N such that qN /N → 0.

5.2.3. Finite-Range Interaction Models

This class of models corresponds to a fixed value of L i.e. a value independent
of N . We shall assume that q < L since our goal is to prove that the approximation
is good when q is substantially smaller than L . Due to the fact that the interaction
is of finite-range type, a micro-cell x ∈ LN “feels” L microscopic neighbors on
each side, in the sense that J (x − y) �= 0 for 2L different sites y ∈ LN . This
neighborhood includes cells belonging to D[x]. In the same time the coarse cell
[x] ∈ Lm “feels” at most E((L − 1)/q) + 1 coarse cells on each side, where E(u)
stands for the integer part of u ∈ R. We denote by Q([x]) the union of these
coarse cells. Some x ∈ LN fail to interact with a certain number of micro-cells
that belong to Q([x]). These micro-cells are included in at most 4 different coarse
cells (depending on the location of x within [x]) which union we denote by R(x).
We shall denote by τR(x) the set of sites y ∈ R(x) such that |x − y| ≤ L/N . Due to
the smoothness of V we obtain as in the previous section that for every k, l ∈ Lm ,
k �= l, x ∈ Dk , y ∈ Dl

|J (x − y) − J̄ (k, l)| ≤ O

(
q

(2L + 1)2

)

when q/2L + 1 → 0 and for every k ∈ Lm , x, y ∈ Dk

|J (x − y) − J̄ (0, 0)| ≤ O

(
q

(2L + 1)2

)
.
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Hence for every ρ ∈ HN and x ∈ LN such that ρ(x) = 1∣∣
N
m,q (x, ρ)

∣∣ = ∣∣U f g
N (x, ρ) − U cg

m,q ([x], F(ρ))
∣∣ ≤

∑
k∈Lm ,k �=[x]

k∈Q([x])/R(x)

∑
y∈Dk

| J̄ ([x], k)

−J (x − y)|ρ(y) +
∑
y∈D[x]
y �=x

|J (x − y) − J̄ (0, 0)|ρ(y)

+
∑

k∈Lm ,k �=[x]
k∈R(x)

| J̄ ([x], k)|F(ρ)(k) +
∑

y∈τR(x)

|J (x − y)|ρ(y)

≤ O

(
q

2L + 1

)
where the O-estimate above is uniform and holds when q/2L + 1 → 0. By using
the arguments employed in the previous section we obtain the announced result.

6. CONCLUSIONS

In the present paper we gave a rigorous error estimate for the approximation
of exact coarse-grained processes by CGMC dynamics. We computed the infor-
mation loss between exact and approximating CG adsorption/desorption lattice
dynamics. In analogy to rigorous error estimates for finite element/finite differ-
ence approximations of Partial Differential Equations, our result can be viewed as
an error analysis between the exact and approximating CG processes. The error
is measured in terms of the specific relative entropy and represents the loss of
information in the transition from one scale to the other. More specifically, we
obtained

1

N
H

(
DF(σ )

[0,T ]|Dη

[0,T ]

) = T × O

(
q

2L + 1

)
This result gives a first mathematical reasoning for the parameter regimes for which
nonequilibrium coarse grained MC algorithms are expected to give errors within a
given tolerance. A crucial technical step in the analysis was the introduction of an
auxiliary microscopic Markovian process which was directly reconstructed from
the coarse-grained process (ηt )t≥0 and approximated within a O( q

2L+1 ) error in
relative entropy the microscopic process (σt )t≥0.
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